
OracleGS: Grounding Generative Priors for Sparse-View Gaussian Splatting

Supplementary Material

In this supplementary material, we provide more detailed
explanations of the proposed method. First, we explain
the implementation details including the process of point
cloud generation in Section A.1, and depth map generation
in Section A.2. Subsequently, we offer an in-depth explana-
tion of our 3D-Aware Oracle’s construction (Section A.3).
This includes the technical process of extracting attention
maps from the VGGT model, a layer-by-layer analysis of
the attention’s evolution, and a detailed rationale for our de-
sign choice of using a weighted average of layers 0 and 22
to form the final uncertainty signal. Afterwards, we share
training hyperparameters in section A.5. Extended qual-
itative and quantitative results on Mip-NeRF 360 [1] and
NeRF Synthetic [6] are provided in Section B. Importantly,
we share our ablation study on our novel Progressive Aug-
mentation Strategy in Section C. Finally, we discuss the lim-
itations and future work in Section D.

A. Implementation Details
A.1. Point Cloud Generation from Sparse-Views.
We generate a sparse 3D point cloud for a predefined sub-
set of 12-24 training views for Mip-NeRF 360 [1] and
8 training views for NeRF Synthetic [6] using a custom
COLMAP [8, 9] pipeline. The process begins with GPU-
accelerated SIFT feature extraction [5], configured to ex-
tract up to 16,384 features per image with a maximum di-
mension of 4032 pixels, with both affine shape estimation
and domain-size pooling enabled. Following extraction, an
exhaustive matching strategy is employed, retaining up to
32,768 matches per image pair and utilizing guided match-
ing. We bypass the standard Structure-from-Motion (SfM)
pipeline for pose estimation. Instead, we leverage known
camera extrinsics (rotation quaternions and translation vec-
tors) from a pre-existing, complete reconstruction of the
scene. These ground-truth poses are programmatically fixed
for the training views, after which COLMAP’s point trian-
gulator is executed to compute the 3D point locations by
minimizing reprojection error across all feature correspon-
dences and includes bundle adjustment refinement steps,
configured with 40 local iterations, 3 local refinements, and
100 global iterations. The final output is a sparse point
cloud whose 3D points are newly triangulated from the se-
lected views but are inherently registered within the coordi-
nate system of the original, complete model.

A.2. Depth Map Generation
For depth regularization, we generate depth maps using
the Depth Anything V2 Large model [11], which contains

335.3M parameters and operates on full-resolution sparse-
input training images. As our focus is not on depth reg-
ularization, we adopt the out-of-the-box depth regulariza-
tion strategy from the original 3DGS codebase [4], which is
compatible with Gaussian Splatting training. To set scene
scale, for each image, we project the sparse 3D points
from COLMAP into the camera view to get a set of sparse,
metrically-scaled depth values. We then compare these val-
ues to the corresponding depth values sampled from the
monocular depth map at the same pixel locations. Fi-
nally, we compute and save a per-image scale and offset,
which allows the arbitrarily-scaled monocular depth maps
to be transformed into the metrically consistent scale of the
COLMAP [8, 9] world.

A.3. Uncertainty Map Extraction
We repurposed the global-attention maps of VGGT [10],
the regressive MVS model as a proxy for 3D uncertainty.
Our visualization utility extracts attention maps from any
specified global attention layer. Extracting maps for multi-
ple layers, such as layers 0 and 22, requires separate execu-
tions. Each execution performs one complete forward pass
through the model to generate the attention map for the sin-
gle specified layer. This design ensures that the attention
mechanism is analyzed in its true context at that specific
depth, without altering the model’s standard inference flow.

A key technical consideration is the incompatibil-
ity of visualization with fused attention mechanisms
like Flash Attention [2, 3]. Our model leverages
functional.scaled dot product attention
from torch.nn for optimized training and inference. How-
ever, when a layer’s attention map needs to be visualized,
our implementation explicitly disables this fused kernel
and reverts to the slower and memory hungry classical
attention computation. This is a necessary step because
fused attention is an opaque operation that computes the
final output directly from queries, keys, and values, without
ever materializing the intermediate N ×N attention matrix
in memory. To inspect the attention scores, this matrix must
be explicitly computed, which is handled by the non-fused
fallback path.

The visualization path is further optimized for memory
efficiency. Upon reaching the target global attention block,
a specialized computation is triggered. Rather than com-
puting the full query matrix Q ∈ RNtotal×dk , we isolate
the single query vector qcam corresponding to the camera
token of the designated source frame. The attention scores
are then computed efficiently via the matrix-vector prod-
uct: A = softmax(qcamKT

√
dk

), where K ∈ RNtotal×dk con-
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Figure 1. Evolution of Global Attention in VGGT for Oracle Layer Selection. Visualization of global attention from a single source
view’s camera token to all patch tokens across all 24 global layers of the VGGT aggregator. This sequence illustrates how the model’s
understanding of 3D consistency evolves. Early layers (e.g., 00-02) exhibit diffuse attention based on low-level feature matching. Mid-
layers (e.g., 03-09) sharply focus on high-confidence foreground geometry, demonstrating strong regressive fidelity but ignoring the wider
context. Late layers (e.g., 20-23) develop a more semantic understanding, highlighting the main object and its immediate, plausible
surroundings. Our oracle’s use of a weighted average of Layer 0 and Layer 22 is informed by this evolution, balancing broad scene
completeness with high-level structural and semantic confidence.

tains the keys of all tokens (camera, register, and patch to-
kens) from all frames. This targeted approach yields a sin-
gle attention map of shape (B,H, 1, Ntotal), where B is the
batch size and H is the number of heads. This computation
is performed in parallel to the standard feature propagation
and does not alter the block’s output features; its sole pur-
pose is to extract the attention weights. The resulting map is
then post-processed: scores are averaged across all attention
heads, and the weights corresponding to the image patches
are reshaped into a normalized 2D grid for each input view,
producing the final heatmaps.

A.3.1. Justification for Oracle Layer Selection

Our “3D-Aware Oracle” repurposes the global attention
maps from a pretrained MVS model, VGGT [10], as a
proxy for 3D uncertainty. VGGT’s aggregator consists
of 24 sequential global attention blocks. As input tokens
propagate through these layers, the nature of the attention
signal evolves from capturing low-level feature correspon-
dences to encoding high-level semantic and structural rela-
tionships. To determine the optimal layers for our uncer-
tainty signal, we visualized the attention map from a single
source view to all other views across all 24 global layers, as
shown in Figure 1. This analysis reveals a distinct pattern
that validates our choice of layers L = {0, 22}.
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Analysis of Attention Evolution The attention maps in
Figure 1 reveal three distinct phases of processing within
the MVS model:
• Early Layers (0-2): In the initial layers, attention is dif-

fuse and widespread, indicating that the model is match-
ing simple, low-level features like color and texture across
all views. Layer 0, in particular, shows high correlation
across nearly the entire scene. While this signal pro-
vides a useful baseline for scene completeness, it lacks the
geometric specificity to distinguish between structurally
sound and inconsistent regions.

• Mid Layers (3-9): The attention mechanism rapidly con-
verges, sharply focusing on the foreground object where
multi-view geometric consistency is highest. The back-
ground and less certain regions receive almost no atten-
tion. While these layers provide a strong signal for re-
gressive fidelity, they are too conservative for our purpose.
Using them would cause the oracle to aggressively reject
nearly all plausible completions proposed by the gener-
ative model, undermining our goal of reconciling com-
pleteness with fidelity.

• Late Layers (20-23): In the final layers, the attention
re-emerges with a more semantic and contextual under-
standing. Layer 22, which we select, provides the ideal
balance. It assigns high confidence to the primary fore-
ground object, yet it also assigns moderate confidence to
the surrounding background foliage. This demonstrates a
holistic understanding of the scene’s composition. It rec-
ognizes not just the object, but its plausible environment.

Justification for L = {0, 22} Our final uncertainty map
is a weighted average of attention from Layer 0 (weight 1/4)
and Layer 22 (weight 3/4). This specific combination is
designed to balance two objectives:
1. Layer 0 provides a broad, low-level signal that ensures

the entire scene is considered, preventing the oracle from
being overly punitive in under-observed regions.

2. Layer 22 provides a mature, high-level signal that
strongly grounds the uncertainty in semantically and
structurally coherent regions, effectively identifying and
filtering generative hallucinations.

By heavily weighting the semantic signal from Layer 22
while retaining a baseline from Layer 0, our oracle produces
a nuanced uncertainty map that robustly guides the 3DGS
optimization, fulfilling the core principle of our “propose-
and-validate” framework.

A.4. Synthetic Image Generation
We use Stable-Virtual-Camera [13] with the img2img
task, with an orbital trajectory prior and a
nearest-gt chunking strategy. The generation pa-
rameters are set as CFG=3.0, training context window
length T=80, and shortest size lengthLshort = 576.

Scene PSNR ↑ SSIM ↑ LPIPS ↓

Chair 28.369 0.955 0.036

Drums 21.149 0.885 0.073

Ficus 23.879 0.921 0.058

Hotdog 29.134 0.957 0.037

Lego 23.400 0.871 0.087

Materials 19.381 0.860 0.091

Mic 26.950 0.959 0.027

Ship 25.709 0.830 0.124

AVG 24.746 0.905 0.067

Table 1. Per-scene results on the NeRF Synthetic [6] dataset for
8 input views. We report PSNR, SSIM, and LPIPS metrics. The
average scores across all scenes are highlighted in bold.

A.5. Hyperparameters

For Mip-NeRF 360 [1], we train and evaluate scenes under
both 12- and 24-view settings with the following where for
12-view, all scenes are trained to 15k iterations, and for 24-
view, all scenes are trained to 22k iterations.

The maximum number of splats used per scene is as fol-
lows: bicycle 1,200,000; bonsai 700,000; counter 900,000;
garden 900,000; kitchen 700,000; room 800,000; stump
600,000.

For NeRF Synthetic [6], all evaluations are performed
at 15k iterations with white backgrounds. The number of
maximum splats used per scene for chair, drums, ficus, hot-
dog, lego scenes is 200,000; for materials, mic, and ship
400,000 splats are used.

Figure 2. Mode of failure due to Generative NVS Model.
Stable-Virtual-Camera (SEVA) [13] fails to produce results that
reflect scene structure correctly in the ”’stump”’ scene from Mip-
NeRF 360 [1]. (Left) synthetic images generated by SEVA.
(Right) ground truth images from similar viewpoints. Despite this,
OracleGS robustly handles stump scene and is included in full for
all evaluations and ablations.
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CoR-GS [12] DropGaussian [7] OracleGS (Ours) Ground Truth

Figure 3. Further results on visual comparison with state-of-the-art methods on the Mip-NeRF360 [1] dataset.

Scene
12-view 24-view

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicycle 18.781 0.383 0.511 20.450 0.452 0.415

Bonsai 20.634 0.713 0.274 25.983 0.868 0.152

Counter 20.116 0.663 0.299 24.237 0.813 0.172

Garden 20.287 0.544 0.328 23.980 0.749 0.194

Kitchen 21.483 0.745 0.218 25.494 0.880 0.122

Room 22.341 0.773 0.253 25.630 0.859 0.177

Stump 18.575 0.353 0.568 20.291 0.446 0.477

AVG 20.317 0.596 0.350 23.723 0.723 0.244

Table 2. Per-scene results on Mip-NeRF 360 dataset. We report
PSNR, SSIM, and LPIPS metrics for our method trained with 12
and 24 input views. Average scores are highlighted in bold.

B. More Experiment Results

B.1. Results on Mip-NeRF 360

The per-scene quantitative results on the Mip-NeRF 360
dataset are presented in Table 2. A notable case is the
stump scene, where the underlying generative NVS model
failed to produce coherent novel views, as visualized in Fig-
ure 2. This failure of the generative prior directly impacted
our final metrics, underscoring that the performance of Or-
acleGS is inherently dependent on the quality of the ini-
tial scene proposal. Further qualitative comparisons on the
Mip-NeRF 360 dataset are provided in Figure 3.
Row 1 (Bonsai, 24 views): DropGaussian [7] exhibits
significant artifacts from stretched, anisotropic Gaussians
that fail to represent the high-frequency texture of the
knitted purple fabric. CoR-GS [12] suffers from under-
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reconstruction and oversmoothing, particularly in the upper
portion of the scene. In contrast, our method faithfully re-
constructs these fine details while maintaining overall struc-
tural integrity.
Row 2 (Counter, 24 views): On the counter scene,
DropGaussian [7] produces prominent brown floating ar-
tifacts in the foreground. CoR-GS [12] also generates
floaters, concentrated along the under-observed sides of the
kitchen island. Our method substantially suppresses these
artifacts, though it introduces minor oversmoothing on the
far sides of the counter as a trade-off for improved cleanli-
ness.
Row 3 (Kitchen, 12 views): In this highly sparse set-
ting, CoR-GS [12] exhibits severe floater artifacts near the
camera, which is indicative of overfitting to ambiguous re-
gions. Our method successfully eliminates these foreground
floaters, yielding a much cleaner result. However, minor in-
consistencies persist in distant background elements, such
as the partially reconstructed red broomstick, where multi-
view constraints are weakest.
Row 4 (Bicycle, 12 views): The bicycle scene with 12
views is among the most challenging scenarios, as reflected
by the quantitative metrics in Table 2. Competing methods
fail to reconstruct a coherent structure, producing blurry and
fragmented results. While OracleGS does not achieve a per-
fect reconstruction, exhibiting some texture artifacts on the
bench and oversmoothing in the background, it preserves
the global scene structure and object coherence far more ef-
fectively.
Row 5 (Garden, 12 views): The background foliage proves
difficult for competing methods, which either display se-
vere smearing (DropGaussian) [7] or suffer from a loss of
detail, resulting in blurry and incomplete regions (CoR-
GS) [12]. Guided by our uncertainty-aware optimization,
our method reconstructs the background with significantly
higher fidelity and completeness.

B.2. Results on NeRF Synthetic
We present our quantitative results on NeRF Synthetic [6]
on Table 1.

Figure 4 provides a qualitative comparison on the NeRF
Synthetic dataset, which features object-centric scenes with
complex materials and fine structures. Our method consis-
tently produces cleaner and more faithful reconstructions
compared to prior work.
Lego (Row 1): This scene highlights our method’s ef-
fectiveness at eliminating floating artifacts. CoR-GS [12]
produces significant spurious geometry and high-frequency
noise around the object. While DropGaussian [7] reduces
these artifacts, some residual floaters persist. OracleGS
generates a significantly cleaner reconstruction, preserving
sharp object boundaries without the distracting peripheral
noise.

CoR-GS [12] DropGaussian [7] Ours Ground Truth

Figure 4. Further visual comparison with state-of-the-art
methods on the NeRF Synthetic [6] dataset on 8 training views.

Materials (Row 2): The primary challenge in this scene
is the accurate rendering of non-Lambertian surfaces with
complex specular reflections. CoR-GS [12] suffers from
catastrophic failure, with severe degradation in both appear-
ance and structure. DropGaussian [7] manages to preserve
the basic shapes but introduces a diffuse, hazy glow that
corrupts the reflections and scene background. Our method
reconstructs the challenging specularities on the metallic
spheres with high fidelity, closely matching the ground truth
with few floater artifacts.

Mic (Row 3): This scene tests the ability to reconstruct both
smooth textures and fine-grained structures. The metallic
texture of the microphone in the CoR-GS [12] reconstruc-
tion is corrupted by grainy, high-frequency noise. In con-
trast, OracleGS robustly reconstructs these thin structures
while rendering the smooth metallic surface of the micro-
phone accurately.

Ship (Row 4): Here, the difficulty lies in modeling the
boundary between the central object and its surrounding
medium. CoR-GS [12] fails to reconstruct the water, result-
ing in a severe geometric collapse around the ship. Drop-
Gaussian [7] defines the water’s shape but renders it with
a blurry, hazy appearance that lacks a crisp boundary. Our
method successfully reconstructs the entire scene, render-
ing the water with a well-defined surface and a sharp, clean
edge that aligns almost perfectly with the ground truth.
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C. Ablation Study on Progressive Augmenta-
tion Strategy
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Figure 5. Qualitative ablation of the training schedule across
iterations to demonstrate the stabilizing effect of our novel cur-
riculum. Without the curriculum (top row), naively incorporating
synthetic views leads to catastrophic geometric collapse as early
as 7k iterations. With our curriculum (bottom row), a coherent ge-
ometric scaffold is established early on and is refined to a clean
final result. Note that both methods are shown without our other
contributions (e.g., depth supervision, LPIPS) to purely isolate the
effect of the schedule.

A direct comparison between our progressive augmenta-
tion strategy and a naive, static approach reveals the criti-
cal role our curriculum plays in stabilizing the training pro-
cess, as visualized in Figure 5. The method without the
schedule (top row) fails catastrophically because it is im-
mediately subjected to conflicting supervisory signals. The
dense but imperfect synthetic views introduce a high vol-
ume of noisy gradients that overwhelm the sparse, high-
fidelity signal from the ground-truth images. This conflict
corrupts the fragile initial structure, causing the optimiza-
tion to diverge completely. In contrast, our method with the
progressive curriculum (bottom row) succeeds by strategi-
cally staging the introduction of information. By prioritiz-
ing ground-truth views in the early stages, it first establishes
a stable and geometrically coherent foundation. Once this
anchor is in place, the curriculum introduces the synthetic
views, allowing them to safely densify and complete the
scene without the risk of destabilizing the entire representa-
tion. This controlled process transforms the synthetic data
from a source of destructive noise into a constructive scaf-
fold, enabling stable convergence towards a detailed and
complete final result.

D. Limitations and Future Work

The performance of OracleGS is inherently upper-bounded
by the quality of the 3D-aware generative model used in
the ”propose” stage. While our geometric oracle is effec-
tive at filtering inconsistencies, it cannot correct a funda-
mentally flawed or collapsed generative prior, as observed

in challenging cases like the ’stump’ scene, as demonstrated
in Figure 2. However, the modular, plug-and-play nature of
our framework means it is set to automatically inherit im-
provements from the rapidly advancing field of 3D genera-
tive modeling. As more powerful generative priors become
available, they can be integrated into our pipeline, promis-
ing a path toward continued state-of-the-art performance.
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