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Figure 1. OracleGS Reconciles Generative Completeness with Regressive Fidelity. First, a generative model proposes a potentially
flawed, synthetic view (middle left). Our MVS-based oracle then grounds this proposal by quantifying a 3D uncertainty map (middle),
effectively identifying various sources of generative errors; including faulty textures on the mat, inconsistent structures on the lego, and
under-observed backgrounds, as regions of high uncertainty (highlighted in blue). Using this signal to guide a confidence-weighted opti-
mization, OracleGS filters these artifacts, producing novel views (middle right) with superior fidelity compared to both the synthetic input
and prior state-of-the-art DropGaussian [31] (left).

Abstract

Sparse-view novel view synthesis is fundamentally ill-posed
due to severe geometric ambiguity. Current methods are
caught in a trade-off: regressive models are geometri-
cally faithful but incomplete, whereas generative models
can complete scenes but often introduce structural incon-
sistencies. We propose OracleGS, a novel framework that
reconciles generative completeness with regressive fidelity
for sparse view Gaussian Splatting. Instead of using gen-
erative models to patch incomplete reconstructions, our
”propose-and-validate” framework first leverages a pre-
trained 3D-aware diffusion model to synthesize novel views
to propose a complete scene. We then repurpose a multi-
view stereo (MVS) model as a 3D-aware oracle to validate
the 3D uncertainties of generated views, using its atten-
tion maps to reveal regions where the generated views are
well-supported by multi-view evidence versus where they
fall into regions of high uncertainty due to occlusion, lack
of texture, or direct inconsistency. This uncertainty signal
directly guides the optimization of a 3D Gaussian Splat-
ting model via an uncertainty-weighted loss. Our approach
conditions the powerful generative prior on multi-view geo-

*Work conducted as part of a research collaboration with Google and
the Technical University of Munich (TUM).

metric evidence, filtering hallucinatory artifacts while pre-
serving plausible completions in under-constrained regions,
outperforming state-of-the-art methods on datasets includ-
ing Mip-NeRF 360 and NeRF Synthetic.

1. Introduction
Novel-view synthesis (NVS) [26] constitutes a fundamen-
tal problem in computer vision, which seeks to reconstruct
the 3D scenes from given viewpoints and render photo-
realistic observations from novel perspectives. This capa-
bility is central to a variety of downstream applications, in-
cluding large-scale 3D content generation [13, 23, 25, 62],
digital twin construction [9, 35], and immersive virtual real-
ity [7, 14]. A particularly challenging yet practically signifi-
cant setting is sparse-view NVS, where only a limited num-
ber of casually captured images are available acquired via
handheld devices in uncontrolled environments. Address-
ing this setting is critical for enabling scalable and accessi-
ble 3D content creation in real-world scenarios.

However, when only a few input views are available,
the underlying 3D scene structure becomes severely under-
constrained, hindering high-quality synthesis. This trans-
forms the task from a well-posed interpolation problem
into a highly ill-posed extrapolation problem, where vast
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Figure 2. Overview. Given sparse input views with poses, we first estimate initial point cloud and depth maps. Afterwards, a 3D-Aware
generative model proposes novel synthetic views, while the 3D-Aware Oracle’s attention maps are used as a proxy for 3D uncertainty.
Finally, we train the 3DGS model using a standard loss on the GT views and our novel uncertainty-guided loss on the synthetic views. We
employ a progressive augmentation strategy over the course of the optimization to control the ratio of GT and synthetic images at each
iteration, which helps to stabilize training and guide scene structure.

unobserved regions lead to significant structural ambigu-
ity. This is particularly evident for explicit representations
like 3D Gaussian Splatting (3DGS) [17], which, despite
offering high quality real-time rendering, are prone to se-
vere artifacts when optimized with sparse data [52, 60].
Consequently, a significant body of recent work has fo-
cused on regularizing the 3DGS optimization process us-
ing techniques like generating pseudo-views [64], apply-
ing dropout-based strategies [31], or incorporating external
priors from pre-trained models [52, 60] in the sparse view
regime.

To address the challenge, recent research has diverged
into two main paradigms, each with fundamental limita-
tions. On the one hand, feedforward regression-based mod-
els [4, 6, 15, 57, 65] are effective in extracting information
from visible regions, but their performance degrades in re-
gions of high 3D uncertainty, where robust correspondences
cannot be established. This leads to poorly estimated sur-
faces and textures in occluded or under-observed parts of
the scene. On the other hand, generative models, particu-
larly diffusion-based approaches [8, 24, 33, 39, 48, 49, 51,
58, 63] excel in hallucinating plausible content for these un-
observed regions. However, they often lack strict 3D con-
sistency with the input views, producing results that are vi-
sually compelling but structurally incorrect. This leaves a
critical gap: regressive methods are geometrically faithful
but incomplete, while generative methods are complete but
often unfaithful.

In this paper, we resolve this conflict by inverting the
conventional paradigm. Instead of using a regressive model
to form an incomplete reconstruction and a generative prior
to fill the gaps, our ”propose-and-validate” framework first

leverages a powerful 3D-aware generative model to propose
a complete and plausible scene by synthesizing a dense set
of novel views. We then repurpose a classical multi-view
stereo (MVS) model not as a reconstructor, but as a 3D-
Aware oracle that assesses where the generated views are
well-supported by multi-view evidence, thereby validating
these proposals. It distills this assessment into per-pixel
uncertainty maps, which directly guide the optimization
of a 3DGS [17] representation via a uncertainty-weighted
loss. This approach grounds the powerful generative prior
on multi-view evidence, filtering out inconsistent artifacts
while preserving plausible completions, leading to novel
views that are both complete and structurally sound. In
summary, our main contributions are:
• A ”propose-and-validate” framework for sparse-view

NVS. Our method, OracleGS, synergizes generative pri-
ors with geometric validation by using a 3D-aware dif-
fusion model to propose novel views and a multi-view
stereo model to validate their consistency, achieving state-
of-the-art results in sparse-view-3DGS.

• A novel uncertainty-weighted loss derived from MVS
attention. We introduce a novel framework that repur-
poses a multi-view stereo (MVS) model as a 3D uncer-
tainty oracle, using its attention maps to formulate a new
uncertainty-weighted loss for guiding generative novel
view synthesis.

• A progressive augmentation schedule to stabilize opti-
mization. We introduce a training curriculum that treats
synthetic views as a temporary structural scaffold. By
modulating their influence over the course of the training,
we first build a coherent global structure before yielding
to ground-truth data for high-frequency refinement.
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2. Related Work
2.1. 3D Scene Reconstruction
Neural Radiance Fields. Neural Radiance Fields
(NeRF) [26], represents a 3D scene as a continuous,
implicit function learned by a neural network that maps 3D
coordinates and viewing directions to color and density.
This approach led to a series of extensions that improved
rendering quality with anti-aliasing [27], handling complex
unbounded scenes [1], and accelerating training [2] or
improving performance [28, 32]. Despite their high fidelity,
NeRF-based methods typically suffer from slow training
and rendering times, limiting their practical applicability.

3D Gaussian Splatting. To address these efficiency bot-
tlenecks, 3D Gaussian Splatting (3DGS) [17] was intro-
duced. Instead of a neural network, 3DGS models a scene
explicitly with a set of 3D Gaussian primitives that are op-
timized via a differentiable rasterizer, enabling real-time
rendering and significantly faster training while achieving
state-of-the-art quality, which has led to their rapid adop-
tion for novel view synthesis, including improved render-
ing quality [19, 59], implicit surface reconstruction [22] dy-
namic scene modeling [50], text-to-3D generation [38, 56]
while hybrid methods [30] use radiance fields as a prior to
improve the robustness of the Gaussian optimization pro-
cess.

While both NeRF and 3DGS have demonstrated success
in the dense-view regime, their performance degrades sig-
nificantly when the number of training images are reduced,
under sparse-view conditions. This vulnerability highlights
the need for strong priors to regularize the reconstruction
process, a challenge our work directly addresses.

2.2. Sparse-view Novel View Synthesis
To combat the ill-posedness of sparse-view reconstruction,
a significant body of work has focused on introducing pri-
ors through internal regularization. These methods attempt
to constrain the solution space using only the informa-
tion present in the input views or by applying general-
purpose heuristics. Early approaches for NeRF introduced
semantic losses from CLIP such as DietNeRF [10], Reg-
NeRF [29] uses appearance regularization via normaliz-
ing flows, while geometric priors like local depth ranking
and spatial continuity are used in Sparse-NeRF [40]. Oth-
ers focused on training-based strategies, such as FreeN-
eRF [53] which uses frequency annealing to reduce arti-
facts, whereas SimpleNeRF [36] and DNGaussian [21] uti-
lize depth supervision. More recent methods have adapted
these ideas for 3D Gaussian Splatting, using diffusion-
based losses for guidance such as Sparse-GS [52], or gener-
ating pseudo-views to densify the input such as FSGS [64].
CoR-GS [60] co-regularizes the Gaussians to suppress er-

rors, CoMapGS [12] uses uncertainty-aware supervision de-
rived from covisibility maps, Intern-GS [37] uses dense
DUSt3R [46] initialization and foundation-model-guided
optimization, while DropGaussian [31] applies dropout to
Gaussians to alleviate overfitting. While these approaches
improve stability, they are fundamentally data-starved and
constrained by regularization. They can refine what is visi-
ble but cannot reliably hallucinate the complex, unobserved
geometry present in the scene’s information voids.

2.3. External Priors from Auxiliary Vision Models
Instead of relying solely on internal regularization, our work
pioneers an approach that leverages powerful, pre-trained
models from two distinct vision tasks to provide strong ex-
ternal priors.

Multi-View Stereo (MVS). The primary goal of MVS
is to estimate dense geometry by establishing robust cor-
respondences across multiple views. Modern MVS ar-
chitectures, often transformer-based with the advent of
Dust3R [46] and 3R methods [3, 11, 20, 41, 54], and line of
work [16, 42–44] culminating most recently in VGGT [45]
provide a powerful source of geometric evidence for well-
observed regions. Their strength is in producing geomet-
rically accurate outputs where there is sufficient visual in-
formation. However, their performance degrades in texture-
less areas and fails completely in occluded regions where
no correspondences can be found, resulting in incomplete
geometric guidance.

Novel View Synthesis (NVS). In a complementary direc-
tion, regressive feedforward NVS Models [4, 6, 15, 57, 65]
and generative feedforward NVS Models [8, 24, 33, 39,
48, 49, 51, 58] and most recently Stable-Virtual-Camera
(SEVA) [63] can synthesize photorealistic and semanti-
cally coherent images from arbitrary new camera poses.
Their strength lies in their ability to plausibly complete
a scene, and for diffusion-based generative models, this
means hallucinating content for unobserved areas based on
learned priors of the visual world. This generative ca-
pability, however, comes at the cost of fidelity; they are
not constrained by multi-view consistency and can produce
plausible-looking ”fictions” that contradict the true scene
structure.

Thus, these two classes of models are complementary.
MVS provides geometrically accurate but incomplete data,
while generative NVS provides complete but potentially in-
accurate data. Our work introduces a framework to resolve
this tension. While previous methods use MVS for direct
supervision or generative models for naive inpainting, we
repurpose the MVS model as a 3D-aware oracle to validate
proposals from the generative model, achieving a synthesis
that is both structurally sound and visually complete.
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Methods
12-view 24-view

PSNR(↑) SSIM(↑) LPIPS (↓) PSNR(↑) SSIM(↑) LPIPS (↓)

Mip-NeRF 360 [1] 17.73 0.432 0.520 19.78 0.530 0.431
RegNeRF [29] 18.84 0.437 0.544 20.55 0.546 0.398
SparseNeRF [40] 17.44 0.395 0.609 21.13 0.600 0.389

3DGS [17] 18.52 0.523 0.415 22.80 0.708 0.276
DNGaussian [21] 16.28 0.432 0.549 19.26 0.550 0.440
FSGS [64] 18.80 0.531 0.418 22.82 0.693 0.293
SparseGS [52] 19.37 0.577 0.398 23.02 0.713 0.290
CoR-GS [60] 19.52 0.558 0.418 23.39 0.727 0.271
CoMapGS [12] 19.68 0.591 0.394 23.46 0.734 0.264
DropGaussian (Our Replication) [31] 19.38 0.583 0.402 23.44 0.736 0.273

Ours 20.32 0.596 0.350 23.72 0.723 0.244

Table 1. Quantitative comparison on Mip-NeRF360 dataset [1] for 12 and 24 input views. The best, second-best, and third-best entries are
marked in red, orange, and yellow respectively.

3. Method
3.1. Preliminaries
3D Gaussian Splatting (3DGS) [17] is an explicit scene
representation that uses a collection of 3D Gaussians for
high-fidelity, real-time novel view synthesis. Each Gaus-
sian is defined by a set of optimizable attributes: a position
(mean) µ ∈ R3, a covariance matrix Σ ∈ R3×3, an opacity
α ∈ [0, 1], and a color c ∈ R3. To model view-dependent
effects, the color is typically represented by Spherical Har-
monics (SH) coefficients. For efficient optimization, the co-
variance matrix Σ is parameterized by a 3D scaling vector s
and a rotation quaternion q. To render a novel view, the 3D
Gaussians are projected onto the 2D image plane and then
blended in depth-sorted order. The final color C for a pixel
is computed via alpha-blending:

C =

N∑
i=1

Tiαici, (1)

where N is the number of Gaussians overlapping the pixel,
sorted by depth. The color of the i-th Gaussian is ci, and
its opacity is αi. The accumulated transmittance Ti ensures
that Gaussians closer to the camera have a greater contribu-
tion.

While 3DGS achieves state-of-the-art results, its perfor-
mance is contingent upon a dense set of input views that
provide robust geometric and photometric constraints. In
the sparse-view setting, the optimization becomes severely
under-constrained, often leading to undesirable artifacts
such as floater artifacts and incomplete, blurry renderings.

We introduce OracleGS, with a “propose-and-validate”
framework that synergizes generative and regressive frame-
works. First, a generative model proposes a complete
scene by synthesizing novel views. An MVS model, re-
purposed as a 3D-aware oracle, then validates these pro-

posals by quantifying their 3D uncertainty. This signal
guides the optimization of a 3DGS [17] representation, op-
timized using 3DGS-MCMC [19], which is initialized from
a COLMAP [34] point cloud generated using ground-truth
poses. Our method is illustrated in Figure 2.

3.2. View Augmentation & Uncertainty Estimation
The foundation of our method is a new architecture that as-
signs synergistic roles to its generative and regressive com-
ponents via the “Propose-and-validate” framework.

View Augmentation via Generative NVS. The first
stage addresses the information gap inherent in sparse in-
puts. We use a pre-trained, 3D-aware diffusion model
(SEVA) [63] to propose a complete version of the scene.
Given the sparse set of N ground-truth (GT) images {Ii}Ni=1

and their corresponding camera poses {Pi}Ni=1, the model
generates a dense set of M synthetic images {I ′j}Mj=1 from
new query camera poses {P ′

j}Mj=1. Though the generative
model creates novel views, they are not geometrically per-
fect. The purpose of this stage is to provide a coarse pro-
posal for the scene’s appearance and structure, effectively
filling unobserved regions. However, these synthetic views
{I ′j} are a rich but potentially inconsistent source of data;
directly using them without refinement would propagate ge-
ometric inaccuracies and visual artifacts, leading to a sub-
optimal final reconstruction. The subsequent stages are de-
signed to mitigate these issues.

Uncertainty Estimation via a Repurposed MVS Oracle.
Proposed synthetic views contain inconsistencies, and us-
ing them naively destabilizes the training process. To vali-
date the structural integrity of the proposed synthetic views,
we introduce a 3D-Aware Oracle whose task is to assess
their 3D uncertainty. While traditional methods leverage
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CoR-GS [60] DropGaussian [31] OracleGS (Ours) Ground Truth

Figure 3. Visual comparison with state-of-the-art methods on the Mip-NeRF360 [1] dataset. Our method, OracleGS, demonstrates
superior handling of common failure modes. Top row (Bonsai, 12 views): OracleGS accurately reconstructs the challenging carpet texture
and background regions while competing methods produce noticeable artifacts. Middle row (Room, 12 views): Our method avoids
the distortions present in other reconstructions. Bottom row (Bicycle, 24 views): Our approach strikes a balance between detail and
smoothness, preventing the noisy overfitting seen in CoR-GS [60] and the oversmoothing that erases fine details in DropGaussian [31].

MVS models for direct supervision via their final depth or
point cloud outputs, these are often noisy and incomplete
in sparse-view settings, providing unreliable guidance. We
circumvent this limitation by extracting a more reliable sig-
nal directly from the MVS model’s intrinsics. Inspired by
recent findings that attention maps in vision transformers
encode rich structural cues [5], we repurpose the global-
attention maps from a transformer-based MVS model,
VGGT [45] as a powerful proxy for 3D uncertainty. Specif-
ically, a high global-attention score between views signifies
strong multi-view consistency and thus high 3D confidence.
Conversely, a low score suggests high 3D uncertainty, effec-
tively identifying generative hallucinations that lack robust
multi-view support. This fine-grained uncertainty signal is
then used to guide the final optimization.

3D-Aware Oracle Implementation. To implement the
geometric oracle Φ, we first partition the set of synthetic
views {I ′j}Mj=1 into disjoint chunks {Ck}. This is neces-
sary because the GPU memory requirements of the MVS
model [45] scales with the number of input views. Each
chunk Ck is independently processed by the MVS model to
assess the 3D uncertainty of the generated scene proposal.
Let Ψ(l)(I ′j |Ck) be an operator that extracts the global at-
tention maps from view I ′j ∈ Ck from layer l of the MVS
model, computed with respect to the other views within its

own chunk Ck. The final uncertainty map Uj ∈ [0, 1]H×W

is a weighted average of these layer normalized attention
maps from a set of layers L:

Uj =
∑
l∈L

wl ·Ψ(l)(I ′j |Ck), where I ′j ∈ Ck. (2)

In our implementation, we use layers L = {0, 22}, ref-
erence view Ij = I0, with corresponding weights wl =
{ 1
4 ,

3
4}. We provide an analysis for this layer selection in

the supplementary material. This map serves as the oracle’s
final judgment, with Uj(u, v) ≈ 1 signifying high confi-
dence, low uncertainty and Uj(u, v) ≈ 0 signifying low
confidence, high uncertainty.

3.3. Uncertainty-Enforced 3DGS Optimization
Having generated the synthetic proposals and the corre-
sponding per-pixel uncertainty maps, we now detail how
these components are integrated to supervise the 3DGS op-
timization. The final stage uses sparse GT training views,
synthetic proposals from non-test viewpoints, and the ora-
cle’s uncertainty maps to optimize a 3DGS scene.

Ground-Truth and Depth Loss (LGT). For any sampled
GT view Ii, and predicted view Îi the loss combines a stan-
dard photometric term with a depth term.

LGT = Lphoto + λdepth(t)Ldepth (3)
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The photometric loss, Lphoto, is a combination of L1 and
SSIM:

Lphoto = (1− λssim)L1(Îi, Ii) + λssimLSSIM(Îi, Ii) (4)

The depth loss for 3DGS Ldepth, as established in Hierarchi-
cal 3DGS [18], is applied when reliable monocular depth
priors are available for a GT view. It is a masked L1 loss
between the rendered inverse depth D̂i and the provided in-
verse depth map Di:

Ldepth = ∥(D̂i −Di)⊙Mi∥1 (5)

where Mi is a mask indicating reliable depth regions and ⊙
indicates element-wise multiplication. The weight λdepth(t)
is annealed with an exponential schedule with initial and
final weights λdepth0

= 1, λdepth1
= 0.01 respectively.

Uncertainty-Weighted Synthetic Loss (Lsynth). For a
sampled synthetic view I ′j , and predicted synthetic novel
view Î ′j , the loss is modulated by the oracle’s uncertainty
map Uj . Standard photometric losses are highly sensitive
to pixel-level artifacts in generated images. We therefore
incorporate a perceptual LPIPS [61] loss, which is more ro-
bust to minor texture variations. The total synthetic loss is:

Lsynth =(1− λ′
SSIM − λLPIPS) · ∥(Î ′j − I ′j)⊙ Uj∥1

+ λ′
SSIM · ∥(1− SSIM(Î ′j , I

′
j))⊙ Uj∥1

+ λLPIPS · Ūj · LLPIPS(Î
′
j , I

′
j)

(6)

Here, the L1 loss is weighted on a per-pixel basis by the
uncertainty map Uj . We perform an element-wise multi-
plication of the map SSIM [47] creates within each patch
with our uncertainty map Uj before averaging to a final loss
value. This mechanism forces the optimization to prior-
itize structural consistency in regions deemed reliable by
the oracle, while effectively down-weighting the contribu-
tion from patches in uncertain or artifact-prone areas. The
LPIPS [61] loss, which operates on image patches, is mod-
ulated by a single scalar value Ūj = mean(Uj), represent-
ing the overall geometric integrity of the entire synthetic
view. This prevents low-uncertainty patches from subsi-
dizing high-uncertainty ones in the perceptual loss, ensur-
ing that low uncertainty images contribute significantly to
the final appearance. We inherit the regularization terms on
opacity and scale (Lreg) from 3DGS-MCMC [19] to encour-
age a compact representation. The total loss becomes:

L = LGT + Lsynth + Lreg (7)

3.4. Progressive Augmentation Schedule
To further stabilize training, we employ a dynamic training
curriculum, governed by a scaled and shifted Beta distribu-
tion, to schedule the sampling probability of synthetic views

CoR-GS [60] DropGaussian [31] Ours Ground Truth

Figure 4. Visual comparison with state-of-the-art methods on
the NeRF Synthetic [26] dataset. Our method consistently pro-
duces higher-fidelity reconstructions across diverse and challeng-
ing scenes compared to prior work. Top row (Hotdog): OracleGS
eliminates the ”floater” artifacts present in competing methods,
preserving details on the condiments and plate. Middle row (Fi-
cus): Our method reconstructs the intricate vase structures where
competing methods fail. Bottom row (Drums): Our method re-
constructs the thin structures of the drum kit’s stands and cymbals,
which are fragmented or missing in other reconstructions.

over time. This schedule is designed to use the synthetic
data as an intermediary scaffold for reconstruction. Initially,
the probability of sampling synthetic views is low, allowing
the initial point cloud to guide the scene. Afterwards, the
probability of selecting a synthetic view increases, allowing
their dense geometric and appearance information to rapidly
structure the scene, including the unobserved regions, pro-
viding a coherent foundation that the sparse initial point
cloud cannot. As optimization progresses and the learning
rate anneals, the sampling probability of a synthetic view
decays, reducing the influence of the potentially imperfect
synthetic data, allowing the model to dedicate its capacity to
fitting the fine-grained, high-fidelity details present primar-
ily in the ground-truth images. This curriculum ensures that
the generative prior provides its main contribution of global
structure when most needed, before gracefully yielding to
the ground-truth data for final refinement. Please see the ex-
perimental settings and supplementary material for details.

4. Experiments

4.1. Experimental Settings
Datasets We conduct our experiments on two datasets,
Mip-NeRF360 [1] dataset, which features seven challeng-
ing 360◦ scenes; and NeRF Synthetic [26] dataset which
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Methods PSNR(↑) SSIM(↑) LPIPS (↓)

RegNeRF [29] 23.86 0.852 0.105
FreeNeRF [53] 24.26 0.883 0.098
SparseNeRF [40] 24.04 0.876 0.113

3DGS [17] 21.56 0.847 0.130
DNGaussian [21] 24.31 0.886 0.088
FSGS [64] 24.64 0.895 0.095
CoR-GS [60] 24.43 0.896 0.084
DropGaussian [31] 25.42 0.888 0.089

Ours 24.75 0.905 0.067

Table 2. Quantitative comparison on the Blender [26] dataset
for 8 input views. Best, second, and third results are marked in
red, orange, and yellow respectively.

features eight scenes of 360◦ pathtraced objects with re-
alistic non-Lambertian materials. For the Mip-NeRF 360
dataset, we use every 8th image as testing view and evenly
sample 12 or 24 views from the remaining views as the
training set, and all input images are downsampled to 1

4
of the original height and width. For the NeRF Syn-
thetic dataset, we follow the protocols established in Diet-
NeRF [10] and FreeNeRF [53] by using 8 images for train-
ing and 25 for testing, all input images are downscaled to 1

2
of the original height and width.

Implementation Details We inherit the standard param-
eters from [19] and additionally set λ′

SSIM = λLPIPS = 0.3
and train up to 22,000 iterations. During training, the proba-
bility of sampling a synthetic image is modulated over time
according to psynthetic ∼ 0.1 + 20Beta(t;α = 2, β = 4),
where t is the normalized training progress between 0 and 1.
We use Depth-Anything V2 [55] to predict pseudo inverse
depth and generate synthetic images I ′ using SEVA [63].
We report PSNR, SSIM [47], and LPIPS [61] to evaluate
reconstruction performance quantitatively. We used a sin-
gle A40 GPU for all experiments. For more implementation
details, please refer to the supplementary material.

4.2. Comparison
Evaluation on Mip-NeRF 360 We conduct our eval-
uation on the challenging Mip-NeRF 360 dataset [1],
which features 7 complex, unbounded indoor and outdoor
360° scenes with significant occlusions, making it an ideal
benchmark for sparse-view reconstruction. We evaluate all
scenes for 12-view setting at 15k and all scenes for 24-view
at 22k iterations. As shown in Table 1, our method, Or-
acleGS, establishes a new state-of-the-art in the extremely
sparse 12-view setting, outperforming all prior work across
all three metrics. This strong performance is particularly
notable given the framework’s robustness to generative fail-
ures. In the 24-view setting, the reliance on generative pri-
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Figure 5. Our 3D-aware Oracle quantifies diverse sources of
3D uncertainty. We visualize extracted uncertainty maps (middle
row) on synthetic images from the generative model using global-
attention layers from the repurposed MVS model [45] normalized
from one to zerowhere low uncertainty is shown in yellow and
high uncertainty is shown in purple. Each column demonstrates
the oracle’s ability to identify a specific failure mode in the syn-
thetic proposals by comparing against the ground truth.

ors diminishes, but OracleGS remains highly competitive,
achieving the best performance for PSNR and LPIPS by a
margin. This demonstrates that while our approach provides
the most significant advantage in the critically underdeter-
mined low-data regime, it maintains the state-of-the-art per-
formance as view density increases. For a fair comparison,
we report results for DropGaussian [31] using the standard
1
4 image downsampling, consistent with prior work, as the
official paper evaluates using a non-standard 1

8 resolution.
Figure 3 shows our qualitative results on Mip-NeRF 360 [1]
dataset. Please refer to the supplementary material for per
scene results on Mip-NeRF 360.

Evaluation on NeRF Synthetic We conduct our sec-
ondary evaluation on NeRF Synthetic dataset [26]. Quanti-
tative results on the NeRF Synthetic dataset with 8 training
views are reported in Table 2. Our method achieves the
best scores in SSIM and LPIPS with second best results in
PSNR. This indicates that our method preserves finer, per-
ceptually important details at the expense of minute pixel-
level deviations that PSNR is sensitive to as demonstrated
in Figure 4 in our qualitative results on NeRF Synthetic [26]
dataset.

4.3. Analysis of the 3D-Aware Oracle
To provide a deeper insight into the effectiveness of our pro-
posed 3D-aware oracle, we visualize its output on several
challenging scenes. As shown in Figure 5, the oracle is
remarkably effective in identifying diverse sources of 3D
uncertainty. For instance, the Ficus scene (left) demon-
strates the oracle’s discriminative power: it assigns low
uncertainty to a 3D consistent proposal on the right while
correctly identifying a hallucinated, inconsistent leaf struc-
ture in another proposal on the left for the same scene.
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Method
12-view 24-view

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Baseline [19] 14.10 0.285 0.560 17.95 0.479 0.409

+ Syn. Views 16.72 0.382 0.596 16.88 0.428 0.565

+ Schedule 17.32 0.433 0.515 29.85 0.585 0.362

+ LPIPS Loss 17.60 0.446 0.459 21.34 0.598 0.328

+ SfM Init. 19.96 0.583 0.362 22.88 0.691 0.284

+ Depth Loss 20.28 0.592 0.354 23.64 0.717 0.258

+ Unc. Guide 20.32 0.596 0.350 23.72 0.723 0.244

Table 3. Ablation study on Mip-NeRF 360 [1], showing the pro-
gressive impact of each component for 12-view and 24-view set-
tings. Our full method is shown in bold.

In the Bicycle scene (middle left), the oracle identifies re-
gions of high epistemic uncertainty that are simply under-
observed in the sparse input views. By assigning high un-
certainty to the background, our method is prevents over-
fitting to a potentially inaccurate generative completion.
The oracle is also effective at identifying inconsistencies
at various distances, as shown in the Garden scene (mid-
dle right), where it successfully flags inconsistencies in the
distant background foliage on the top left part of the im-
age. Finally, the Bonsai scene (right) shows the oracle cor-
rectly identifying textureless surfaces as inherently uncer-
tain. This is advantageous during optimization because it
prevents the model from wasting capacity trying to perfectly
replicate potentially noisy generative details on these low-
information surfaces, allowing it to focus on reconstruct-
ing the high-confidence foreground object. This uncer-
tainty signal is what allows our uncertainty-weighted loss
to ground the generative prior.

4.4. Ablation Study
We conduct a comprehensive cumulative ablation study on
the Mip-NeRF 360 benchmark [1]. We first demonstrate
that naively incorporating Synthetic Views (+Syn. Views)
into the training doesn’t improve the performance signifi-
cantly in the sparse-view case as demonstrated by the 12-
view ablations. As the number of training images increase,
naive incorporation of synthetic images actually hurts per-
formance. This confirms that raw generative artifacts can
corrupt the optimization. To address this instability, we in-
troduce a Progressive Augmentation Schedule (+Sched-
ule). This schedule provides a significant performance re-
covery, and it’s critical role is visually demonstrated in the
supplementary material, where omitting it leads to catas-
trophic geometric collapse. We further stabilize training
with LPIPS Loss, providing tolerance to minor generative
artifacts that pixel-wise losses penalize. We then incorpo-
rate established techniques like SfM Initialization (+SfM
Init.) and Depth Regularization (+Depth Loss), which,
as expected, provide improvements by grounding the op-

SSIM: 0.433

Baseline [19]
SSIM: 0.554

+ Synthetic Views
SSIM: 0.545

+ Schedule

SSIM: 0.562

+ LPIPS Loss
SSIM: 0.788

+ SfM & Depth
SSIM: 0.848

+Unc. Guide (Full)

Figure 6. Qualitative Ablation Study on the Mip-NeRF 360 [1]
’kitchen’ scene for 24 views setting.

timization in a plausible geometric state. Finally, we in-
troduce uncertainty-guided loss (+Unc. Guide). Despite
being applied after several strong stabilization components
which have already significantly improved the baseline, it
improves the quantitative and qualitative results. The un-
certainty guidance acts as an intelligent filter, selectively
integrating the now-stabilized synthetic data based on its
3D uncertainty to achieve our final state-of-the-art perfor-
mance.

Figure 6 provides a visual breakdown of our ablation
study. The baseline 3DGS model struggles with high-
frequency texture on the woven mat. Naively incorporat-
ing synthetic views leads to oversmoothing and significant
geometric errors, such as the distorted, widened shape of
the Lego model. Our training schedule corrects this geo-
metric corruption and oversmoothing, but results in similar
distortions with the baseline, reducing the SSIM score. The
addition of a perceptual LPIPS loss refines texture of the
woven mat. While grounding the optimization with SfM
initialization and a depth prior correctly scales the scene, it
also introduces brown ’floater’ artifacts on the mat, high-
lighted in the red rectangle. Finally, our final contribution,
uncertainty-guided loss down-weighs inconsistent regions
in the synthetic data, and removes the brown floaters on the
mat, producing a clean, sharp final reconstruction.

5. Conclusion
In this work, we introduced OracleGS, a ”propose-and-
validate” framework that resolves the trade-off between
generative completion and regressive fidelity in sparse-view
novel view synthesis. Our method uses a pretrained 3D-
aware diffusion model to propose complete scenes and re-
purposes an MVS model as an oracle to validate them. By
distilling 3D uncertainty from the oracle’s global-attention
maps, we guide 3D Gaussian Splatting optimization to pro-
duce reconstructions that are both visually complete and ge-
ometrically sound, achieving state-of-the-art results on the
Mip-NeRF 360 [1] and NeRF Synthetic [26] benchmarks.
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